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al. in [16]. This generating system was adopted by Ryskin
and Leal in [4].A numerical method for 2D orthogonal grid generation with

control of the boundary point distribution is presented. The Ryskin and Leal classified their method in two catego-
method is based on the solution of a system of partial differential ries: the ‘‘weak constraint’’ and ‘‘strong constraint’’ meth-
equations. The grid cell aspect ratio, the so-called distortion ods, according to the type of boundary conditions adoptedfunction, is calculated from its definition equation in the entire

[4]. The ‘‘strong constraint’’ method applies to domainsdomain. The method allows the specification of the boundary
whose shape is not known in advance and the ‘‘weak con-point distribution in all the boundaries and also the distance of

the first grid node to the boundary. The method is successfully straint’’ method, to domains with a known shape. The
applied to several geometries, including geometries with grid latter one has been the subject of several papers [5, 7,
singularities and grids around airfoils and cross-sections of ship

12, 13] which investigated the conditions under which thesterns. Q 1996 Academic Press, Inc.
generating system of equations would generate orthogonal
grids. The main topic of discussion is the existence of a
unique solution for the set of partial differential equations1. INTRODUCTION
adopted by Ryskin and Leal [4] and the type of boundary
conditions that would be admissible to obtain orthogonalA successful numerical calculation of a set of partial
grids. Namely, the number of boundaries where the bound-differential equations is strongly dependent on a good
ary point distribution may be prescribed.‘‘quality’’ grid. Among the several aspects that may charac-

Most of the theoretical work published in these papersterize the grid ‘‘quality,’’ its orthogonality is usually consid-
is based on quasi-conformal mapping [17]. In many of theseered one of the most important. Two-dimensional orthogo-
approaches the grid cell aspect ratio, which is defined bynal grid generators have been the subject of many works
the so-called distortion function, is specified by an auxiliarypublished in the literature since the early 1980s, like for
equation or by interpolation from the boundaries, whichexample, [1–13].
limits the number of boundaries where the grid nodes mayA classical approach to this problem is the use of confor-
be specified [6]. It is commonly accepted that the ‘‘weakmal mapping. An example of its application is given by
constraint’’ method of Ryskin and Leal [4], where theMoretti in [11]. However, conformal mapping is not very
boundary point distribution is specified in all the bound-flexible in the control of the grid node distribution, which
aries and the distortion function is interpolated from thepenalizes its application to difficult geometries [13].
boundary values, in general, produces only nearly orthogo-One of the most popular ways of generating orthogonal
nal grids [5].grids is to use a set of partial differential equations. Differ-

The present paper addresses the problem of 2D orthogo-ent generating systems have been proposed since the work
nal grid generation with specified boundary point distribu-of Mobley and Stewart in 1980 [1]. Visbal and Knight in
tion in all the boundaries in a purely numerical way. The1982 [3] applied the widely used elliptic system proposed
present technique has been suggested by Albert in [8], butby Thompson et al. [14] with the ‘‘control functions’’ deter-
not convincingly explored. In a recent paper Allievi andmined in such a way that the generated grid would be
Calisal [12] also use a similar technique. However, Allievieither orthogonal or nearly orthogonal. A similar elliptical

system has been used by Steger and Sorenson in the and Calisal concluded that their method is successful due
to a Bubnov–Galerkin formulation, rather than the wayGRAPE code [15], where the ‘‘control functions’’ are cal-

culated iteratively to obtain grid orthogonality and a speci- in which the distortion function is calculated. In the present
technique the distortion function is calculated from itsfied grid spacing at the boundary. However, the interior

grid lines may exhibit large deviations from orthogonality. definition equation in all the domain. Our aim is to demon-
strate that it is possible to obtain orthogonal grids withA different elliptic system was proposed by Thompson et
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this type of boundary condition for a large variety of geom- 
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etries. In addition, we show that the distance of the first
grid node to the boundary may also be specified, which
may be an advantageous feature for near-wall viscous 
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hD5 0.flows. Boundary conditions which allow the grid nodes

to move along the lines that define the boundary are also
explored. This generating system has been used by several authors,

for example [5, 6, 8, 12, 13]. The differences between the
methods proposed by these authors is the way in which the2. GENERATING SYSTEM
distortion function f is obtained. Three types of procedures
have been proposed:A 2D orthogonal grid satisfies the condition

1. Calculate f from its definition equation, (3), at the
boundaries and obtain the values in the domain by interpo-g12 5
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5 0, (1)
lation or solving a Laplace equation [4].

2. Specify a class of admissible functions for f which
guarantees the existence of a unique solution [6, 13].where g12 is the off-diagonal component of the covariant

metric tensor. From Eq. (1) and the condition that the 3. Calculate f from its definition equation, (3), in the
Jacobian of the transformation should be greater than zero entire domain [8, 12].
it is easy to see that a 2D orthogonal grid also satisfies the

The way in which f is obtained clearly affects the typeBeltrami equations [16], which may be viewed as general-
of boundary conditions that can be applied to obtain or-izations of the Cauchy–Riemann equations [13].
thogonal grids. The first option corresponds to the ‘‘weak
constraint’’ method of Ryskin and Leal, where the bound-
ary point distribution is specified in all the boundaries.x

h
5 2f

y
j

,

(2)
However, the application of this technique to different
geometries has shown that the method produces onlyy

h
5 f

x
j

, nearly orthogonal grids [5]. In the second option, the calcu-
lation of f is usually based on the theory of quasi-conformal
mapping and the number of boundaries where the bound-

where the so-called distortion function, f, is a posi- ary point distribution can be specified varies from zero [13]
tive quantity given by the ratio of the scale factors hh to two [6]. The latter option has been used by Albert
and hj , [8] and Allievi and Calisal [12] with the boundary-point

distribution specified in all the boundaries, using two differ-
ent numerical approaches. The examples presented in

f 5
hh

hj

(3) these papers are similar. Although the number of grid
nodes used by Albert in [8] is rather small, the results of
the two numerical solutions indicate that the success of

and the approach must be due to the way in which the distortion
function is calculated, rather than to the Bubnov–Galerkin

hh 5 Ïg22 5 Ï(x/h)2 1 (y/h)2,
(4)

formulation as claimed by Allievi and Calisal [12]. There-
fore, to be able to specify the boundary point distributionhj 5 Ïg11 5 Ï(x/j)2 1 (y/j)2.
in all the boundaries we calculate the distortion function
from its definition equation (3), in all the domain.

From the Beltrami equations, (2), and the equalities The system of partial differential equations (5), with f
calculated from its definition equation (3), is a nonlinear
system which implies that the solution must be obtained by
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hD, an iterative procedure. The following iterative algorithm is
used to solve the nonlinear system of partial differential
equations (5):
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1. Determine an initial approximation for the grid. In

the present method, we use linear transfinite interpolation.

2. Calculate the distortion function from the availablethe set of partial differential equations used by Ryskin and
Leal, [4], is easily derived: grid using Eq. (3).
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both terms of Eqs. (5) in a typical control ‘‘volume,’’ we
obtain
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FIG. 1. Typical control ‘‘volume’’ used in the discretization.
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3. Solve the system of Eqs. (5) with f fixed.

4. Go back to step 2 if the convergence criteria are
not satisfied.
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The convergence criteria are discussed in Section 3.5.

2.1. Boundary Conditions where the indexes (i, j) refer to the directions j and h, re-
spectively.The system of partial differential equations (5) requires

Using second-order central differences for the first deriv-boundary conditions at the four boundaries of the compu-
atives of the grid coordinates and, assuming that the gridtational domain. Two types of boundary conditions are
line spacing in the computational domain is uniform andavailable:
equal to one, the set of partial differential equations (5)• Dirichlet boundary conditions. The coordinates (x, y)
is transformed into the system of algebraic equations,of the grid nodes are specified.

• Neumann–Dirichlet boundary conditions. The grid
fi11/2, j xi11, j 1 fi21/2, j xi21, j 1

1
fi, j11/2

xi, j11nodes satisfy the orthogonality condition, Eq. (1) [Neu-
mann], and the equation that defines the boundary line
[Dirichlet].

1
1

fi, j21/2
xi, j21 2 Fi, j xi, j 5 0,

(7)
The present choice is to use Dirichlet boundary condi-

tions in all the boundaries. Although we do not have any
fi11/2, j yi11, j 1 fi21/2, j yi21, j 1

1
fi, j11/2

yi, j11theoretical proof that the system of partial differential
equations (5), with f obtained from its definition equation
(3), with this type of boundary conditions, has a unique

1
1

fi, j21/2
yi, j21 2 Fi, j yi, j 5 0,solution, or even any solution, we will show numerically

that it is possible to obtain converged solutions. Further-
more, we will also show that it is also possible to specify where
the distance of the first grid node to the boundary, which
may be a very attractive feature for viscous flows calcula-

Fi, j 5 fi11/2, j 1 fi21/2, j 1
1

fi, j11/2
1

1
fi, j21/2

.tions in computational fluid dynamics.
The use of boundary conditions of the second type, Neu-

mann–Dirichlet, which are mandatory in at least two 3.2. Solution Procedure
boundaries for the approaches based in quasi-conformal

Equations (7) represent a coupled, nonlinear, system ofmapping [6] is also explored. The application of this type
algebraic equations, due to the dependence of f on x andof boundary conditions is investigated with and without
y. The linearization of the system of algebraic equationsspecified distance of the first grid node to the boundary.
is performed calculating f from a previous approximationThe boundary line is defined by a cubic ‘‘spline’’ calculated
of the solution. For each step of this iterative process,with the initial boundary point distribution.
Eqs. (7) become an uncoupled linear system of algebraic

3. NUMERICAL SOLUTION equations which has to be solved to obtain the new approxi-
mation of the solution. The iterative process required to

3.1. Discretized Equations
determine f from its definition equation (3) will be referred
to as the global cycle.The present grid generating system, given by the system

of partial differential equations (5), is discretized using a The linear system of algebraic equations is solved by
successive line overrelaxation (SLOR), which is an itera-control ‘‘volume’’ technique. The unknowns are collocated

at the center of the ‘‘volume’’ as shown in Fig. 1. Integrating tive technique. The initial approximation to this iteration
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cycle is the grid calculated with the values of f from the tions are applied at a boundary, the condition g12 5 0, Eq.
(1), must be satisfied and the grid node must also belong toprevious iteration. The overrelaxation parameter is esti-

mated using the technique proposed by Ehrlich in [18]. the line that defines the boundary. To keep the uncoupled
linear character of the algebraic system of Eqs. (7), theThe iterative cycle required by the SLOR will be referred

to as the inner cycle. inner cycle (SLOR) iterations are always performed with
Dirichlet boundary conditions. The system of equations

3.3 Determination of f obtained from the Neumann–Dirichlet boundary condi-
tions is solved after each SLOR iteration at all the gridThe coefficients of the algebraic system of Eqs. (7) are
nodes where this type of boundary condition applies.the distortion function values at the four boundaries of

If, for example, we focus our attention in a j boundary,the control ‘‘volume.’’ To calculate f at these four bound-
the grid coordinates derivatives in the j direction are ob-aries, the first derivatives of the grid coordinates are ap-
tained from the cubic ‘‘spline’’ representation of theproximated by first-order central differences. At each
boundary line. Using backward or forward second-orderboundary, this is a straightforward procedure to obtain
differences for the derivatives in the h direction, Eq. (1)two of the four derivatives involved in the determination
becomes a nonlinear algebraic equation with j as the inde-of f like, for example, the derivatives in the j direction for
pendent variable. The nonlinear equation is solved bythe boundaries at (i 2 1/2, j) and (i 1 1/2, j). However,
Newton iteration and the cubic ‘‘spline’’ defines the coordi-the remaining two derivatives require values of the grid
nates (x, y) of the boundary node for the next SLOR iter-coordinates at the corners of the control ‘‘volume.’’
ation.Thompson in [19] suggests that an auxiliary grid, with the

nodes located at the corners of the control ‘‘volume’’ illus- 3.5. Convergence Criteria
trated in Fig. 1, can be used to obtain the unknown grid

The present method includes two iterative cycles: onecoordinates. The main drawback of this approach is the
refers to the determination of the distortion function, f ;double effort required to generate the grid. In the present
the other to the iterative solution of the linear system ofmethod we adopted a much simpler technique. The un-
algebraic equations included in each step of the determina-known grid coordinates are calculated from the arithmetic
tion of f. This second iterative cycle is referred to as themean of the four surrounding nodes. Therefore, we obtain:

fi11/2, j Q
1
2 !(xi11, j11 1 xi, j11 2 xi11, j21 2 xi, j21)2 1 (yi11, j11 1 yi, j11 2 yi11, j21 2 yi, j21)2

(xi11, j 2 xi, j)2 1 (yi11, j 2 yi, j)2

fi21/2, j Q
1
2 !(xi21, j11 1 xi, j11 2 xi21, j21 2 xi, j21)2 1 (yi21, j11 1 yi, j11 2 yi11, j21 2 yi, j21)2

(xi, j 2 xi21, j)2 1 (yi, j 2 yi21, j)2

(8)

fi, j11/2 Q 2 ! (xi, j11 2 xi, j)2 1 (yi, j11 2 yi, j)2

(xi11, j 1 xi11, j11 2 xi21, j 2 xi21, j11)2 1 (yi11, j 1 yi11, j11 2 yi21, j 2 yi21, j11)2

fi, j21/2 Q 2 ! (xi, j 2 xi, j21)2 1 (yi, j 2 yi, j21)2

(xi11, j 1 xi11, j21 2 xi21, j 2 xi21, j11)2 1 (yi11, j 1 yi11, j21 2 yi21, j 2 yi21, j11)2

Equations (8) are applied to the grid coordinates of the inner cycle and the iterative cycle of determination of f is
available approximation of the solution. The maximum referred to as the global cycle.
relative difference of f between iterations, ff , with The convergence criterion used in the inner cycle is

based on the maximum difference between grid coordi-
nates in consecutive iterations,

ff 5 max Sf n 2 f n21

f n D, (9)

fi 5 max(xm
i, j 2 xm21

i, j , ym
i, j 2 ym21

i, j ), (10)
is used to monitor the convergence of the distortion func-
tion. The superscript n refers to the global iteration level. where the superscript m refers to the inner cycle iteration.

For the iterative procedure of determination of f there
3.4. Boundary Conditions

are several alternatives to use as convergence criterion.
One of the obvious choices is the parameter ff defined inThe application of Dirichlet boundary conditions is

straightforward. If Neumann–Dirichlet boundary condi- Section 3.3 by Eq. (9). The grid orthogonality characteris-
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tics may also be used like, for example, the maximum
J 5 Ïg 5

x
j

y
h

2
x
h

y
j

. (14)deviation from orthogonality, which is adopted by Allievi
and Calisal in [12], or the maximum relative error in the
Beltrami equations, (2), which is used by Duraiswami and The first derivatives of the grid coordinates involved in
Prosperetti in [13] to monitor the grid orthogonality char- the calculation of MDO, ADO, MBE, and ABE, are ap-
acteristics. The maximum difference between grid coordi- proximated by second-order central differences.
nates of consecutive global iterations may also be used. In To avoid storing the initial approximation of each SLOR
the present work we have analyzed the behaviour of six cycle, which represents the solution of the previous global
possible options: iteration, the maximum difference between grid coordi-

nates in consecutive global iterations is replaced by the1. The maximum relative difference of f between
maximum difference between grid coordinates of the initialglobal iterations, ff .
iteration of the inner cycle,2. The maximum deviation from orthogonality, MDO.

3. The maximum relative error of the Beltrami equa-
fx 5 max(x1

i, j 2 x0
i, j , y1

i, j 2 y0
i, j), (15)

tions, MBE.

4. The maximum difference between grid coordinates where the superscripts refer to iterations of the inner cycle.
in the first iteration of each inner cycle, fx .

5. The mean deviation from orthogonality, ADO. 4. CONVERGENCE STUDIES
6. The mean relative error of the Beltrami equa-

Two geometries were selected to examine the conver-tions, ABE.
gence characteristics of the method. The first geometry has

The maximum relative difference of f between global itera- been widely used as a test case of orthogonal grid genera-
tions, ff , is defined by Eq. (9). tors since the work of Haussling and Coleman in 1981 [2].

The maximum and mean deviations from orthogonality, It is a concave region limited by the lines x 5 0, x 5 1,
MDO and ADO are calculated from y 5 0, and y 5 0.75 1 0.25 sin(f(0.5 1 2x)). The second

test case was used by Visbal and Knight in [3], and it is aMDO 5 max(u908 2 ui, ju),

(11)
rather demanding test case for particular choices of the
boundary point distribution. It is a region limited by two

ADO 5
1

nx 2 2
1

ny 2 2 O
nx

i52
Ony

j52
(u908 2 ui, ju), nonconcentric half-circles and the x axis, y 5 0. The small-

est half-circle has a diameter of 1 and the largest one has
a diameter of 3. In both geometries, the grid coordinateswhere
are of order 1, which can always be achieved by making
x and y dimensionless using the reference length scale.

u 5 arc cos S g12

hhhj
D. (12) The influence of the convergence criterion of the inner

cycle, SLOR solution, on the global cycle was investigated
The maximum and mean errors of the Beltrami equa- in previous test runs. The results obtained showed that the

tions, in percentages, MBE and ABE are calculated from global iteration convergence history is independent of the
inner cycle criterion if it is assumed that the inner cycle is

MBE 5 100 max stopped when fi # 1.0 3 1026. This convergence criterion
has been adopted in all the applications here presented.
The calculations were performed using double precision1U fi, j Sx

j
D

i, j
2 Sy

hDi, j
U

ÏJi, j

,
U fi, j Sy

j
D

i, j
1 Sx

hDi, j
U

ÏJi, j
2, in a 32-byte precision machine.

Four test cases with Dirichlet boundary conditions in all
the boundaries have been selected. These test cases will
be denoted in the following way:

ABE 5
50

xx 2 2
1

ny 2 2O
nx

i52
Ony

j52
1. Case A (Concave region). The difference of the y

coordinate, Dy, of the grid nodes along the boundaries
x 5 0 and x 5 1 is constant. Dx is constant for the other

3

U fi, j Sx
j
D

i, j
2 Sy

hDi, j
U

ÏJi, j

1

U fi, j Sy
j
D

i, j
1 Sx

hDi, j
U

ÏJi, j
two boundaries.

2. Case B (Concave region). This test case is similar(13)
to Case A. A different grid node distribution is specified
in the boundary at x 5 1.where J is the Jacobian of the transformation given by
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FIG. 2. Test cases for the convergence criteria of the method. Grids obtained after 400 iterations, with specified boundary point distribution in
all the boundaries.

3. Case C (Region limited by two half-circles and the locally. With the boundary distribution used in Test Case
D a perfectly smooth grid is obtained.x axis). The grid nodes along the four boundaries are speci-

fied with a constant distance between grid nodes of each The difficulties in the determination of the distortion
function in Test Case C were found for several initial condi-boundary.
tions and for different values of the inner cycle convergence4. Case D (Region limited by two half-circles and the
criterion, fi . The grid of Test Case C was also calculated,x axis). This test case is similar to case C. A different
imposing that the scale factors hj and hh must be greatergrid node distribution is specified along the half-circle of
than or equal to 1.0 3 1026. The grid line pattern obtainedsmallest diameter.
after 400 iterations of the global iteration cycle is almost

The grids obtained after 400 iterations of the global identical to the one plotted in Fig. 2. The restriction im-
iteration cycle are illustrated in Fig. 2. The grids of the
four test cases have 41 3 41 grid nodes. The values of fx ,
ff , MDO, MBE, ADO, and ABE of the last iteration are

TABLE Isummarized in Table I.
Test Cases A and B show that it is possible to obtain Values of Maximum Deviation from Orthogonality, MDO,

Maximum Beltrami Error, MBE, Mean Deviation fromorthogonal grids in this concave region specifying different
Orthogonality, ADO, Mean Beltrami Error, ABE, Maximumboundary point distributions. The grid obtained for Test
Relative Difference in the Distortion Function, ff , and MaximumCase C has regions where one of the scale factors, hj or
Difference between Grid Coordinates in the First Iteration ofhh , tends to zero. With the specified boundary point distri-
the Inner Cycle, fx , at the 400th Iteration of the Global Cyclebution of this test case, the orthogonality condition origi-

nates regions where several grid lines tend to collapse into Test
one, forming a sort of ‘‘surface of discontinuity’’ in the case MDO MBE ADO ABE log10(ff) log10(fx)
domain. The highly distorted regions of the grid close to

A 0.87 2.90 0.12 0.12 22.46 24.54these ‘‘fronts’’ exhibit large deviations from orthogonality,
B 2.28 7.33 0.25 0.25 22.37 24.13causing the large values obtained for MDO and MBE.
C 71.2 23.4 1.44 0.65 20.41 23.49

Nevertheless, the mean values, ADO and ABE, indicate D 0.20 0.18 0.04 0.03 24.13 25.24
that these large deviations from orthogonality occur only
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FIG. 3. Convergence history of the distortion function and grid coordinates in the Test Cases A, B, C, and D.

posed on the scale factors has no effect in the values of Test Case C, show a strong reduction in the initial itera-
tions, followed by a small increase which seems to be neg-MBE and ABE, but MDO is reduced to 178 and ADO to

1.08. These results suggest that the orthogonality condition ligible only in Test Case D. The iteration where the mini-
mum values of MDO and MBE occur is closely related toand the specified boundary point distribution are responsi-

ble for the ‘‘surface discontinuities’’ obtained in Test Case the iteration where ff becomes almost constant.
To clarify the reason why ff has a lower limit, Test CaseC. The perfectly smooth grid obtained in Test Case D,

with the same boundary geometry, shows that the specifi- A was repeated using single precision. The constant value
of ff after a few iterations remains unchanged, which ex-cation of the boundary point distribution in all the bound-

aries may be troublesome in orthogonal grid generation, cludes roundoff error as the origin of this lower limit of
even for simple geometries.

The history of fx , ff , along the 400 iterations is depicted
in Fig. 3. The evolutions of fx in the four test cases have
a similar pattern. A large decay is obtained in the initial
iterations, followed by a much smaller decay which seems
to remain constant thereafter. The order of magnitude of
fx , where the decay of fx is reduced, is different in the
four test cases. The difference between Test Cases C and
D, which correspond to the same geometry, is almost two
orders of magnitude. The evolutions of ff have the same
initial region of large decay, which is followed by an almost
constant value, with the exception of Test Case C. In this
test case, the regions where the scale factors tend to zero
cause several oscillations in the f determination, which
becomes unstable. However, these oscillations seem to oc-
cur around a constant value of ff . These results suggest
that the f determination has a maximum level of precision
which can be obtained.

The evolution of the four parameters that characterize
the grid orthogonality, MDO, MBE, ADO, and ABE along
the global cycle iterations are plotted in Fig. 4. The devia-
tion from orthogonality and the Beltrami error give similar
information. The mean values, ADO and ABE, show a
strong reduction in the initial iterations followed by an

FIG. 4. Evolution of the maximum deviation from orthogonality,
almost constant value, with the exception of Test Case C, MDO, mean deviation from orthogonality, ADO, maximum Beltrami
where the instabilities caused by the ‘‘shocks’’ are reflected error, MBE, and mean Beltrami error, ABE, in the Test Cases A, B, C,

and D.in ADO. The maximum differences, which do not include
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all the boundaries and the distance of the first grid node
to the boundary is specified along the boundary y 5 0.

2. Case F (Region limited by two half-circles and the
x axis). This test case corresponds to Case D. The grid
node distribution and the distance of the first grid node to
the boundary is specified in all the boundaries.

3. Case G (Region limited by two half-circles and the
x axis). This test case corresponds to Case C. Neumann–
Dirichlet boundary conditions are applied at the half-circle
of largest diameter.

FIG. 5. Maximum relative difference of the distortion function be- 4. Case H (Region limited by two half-circles and the
tween global iterations, ff , and maximum and mean deviations from x axis). This test case is equivalent to Case G, but in addi-
orthogonality, MDO and ADO, as a function of the number of grid nodes tion the distance of the first grid node to the boundary isper direction. Test Case A with 200 global iterations.

specified at the half-circle of largest diameter.

The grids generated for Test Cases E and F are plotted
in Fig. 6. The global iteration cycle diverges for Test Cases

ff . The truncation error of the numerical solution of the G and H, where Neumann–Dirichlet boundary conditions
system of partial differential equations is related to the are applied at the half-circle of largest diameter. The con-
number of grid nodes used per direction. To evaluate its vergence histories of the distortion function and of the grid
influence on the behaviour of ff , Test Case A was repeated coordinates are plotted in Fig. 7. Test Cases G and H,
using different numbers of grid nodes, ranging from 11 to where the distance of the first grid node to the boundary
191 nodes per direction. Figure 5 illustrates the values of is specified, have a convergence history similar to the one
ff after 200 iterations of the global cycle as a function of obtained for Test Cases B and D, where only the boundary
the number of grid nodes per direction. The values of point distribution is specified. The divergence of the global
MDO and ADO are also depicted in Fig. 5. The results iteration cycle is clear in Cases G and H.
obtained show that the lower limit of ff is related to the The evolutions of the four parameters that characterize
truncation error of the finite-difference approximations the grid orthogonality, MDO, MDE, ADO, and ABE are
used in the discretization of the system of partial differen- depicted in Fig. 8. The values of fx , ff , MDO, MBE,
tial equations. The reduction of the truncation error re- ADO, and ABE of the last iteration are summarized in
duces also the deviation from orthogonality in the grid. A Table II. The results of Test Cases G and H show the
similar conclusion is obtained if this test is repeated for Test divergence of the global iteration cycle, following a few
Cases B or D. In Test Case C the solution is conditioned by initial iterations where a big improvement of the orthogo-
the ‘‘shocks’’ and so a similar test is not conclusive. nality characteristics is obtained. The pattern of the evolu-

These convergence studies suggest that none of the six tions of Test Cases E and F is similar to the one obtained
parameters investigated should be used alone as the con- with only the boundary point distribution specified. How-
vergence criterion of the global iteration process. The pres- ever, the precision of the f determination is smaller than
ent option is to use fx and ff to define the convergence the one obtained in Test Cases B and D, which makes the
criteria of the global iteration. The calculation is assumed values of MDO and MBE in Test Cases E and F larger
to be converged if fx becomes smaller than a specified than the ones obtained in Test Cases B and D.
tolerance. In addition, if the difference of ff between two These test cases show that it is possible to generate
consecutive iterations becomes smaller than a specified orthogonal grids with the distance of the first grid node to
value the global iteration is assumed to be converged and the boundary specified, using the present generating sys-
the grid is the solution of the inner cycle with the converged tem. The behaviour of the iterative solution with the Neu-
distortion function. mann–Dirichlet boundary conditions suggests that the Dir-

ichlet boundary conditions should be used in all the
4.1. Boundary Conditions boundaries when the distortion function is calculated from

its definition equation in all the domain.The use of different types of boundary conditions is
investigated with four test cases, where 400 global itera-

5. APPLICATIONStions were performed in 41 3 41 grids. These four test
cases will be denoted in the following way:

The present generating system was applied to several
geometries. The selected geometries have been used by1. Case E (Concave region). This test case corresponds

to Case B. The boundary point distribution is specified in different authors for test cases of orthogonal grid genera-
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FIG. 6. Test cases for the convergence criteria of the method. Grids obtained after 400 iterations, with specified distance of the first grid node
to the boundary and specified boundary point distribution.

tors, or, in some cases, have a relevant role in computa- In Test Case 2C, the value of MDO is significantly reduced
because the convergence criterion used in the f determina-tional fluid dynamics. The calculations were performed

with a convergence criterion of fi # 1.0 3 1026 for the tion freezes the distortion function after a few iterations,
reducing the intensity of the ‘‘shocks.’’SLOR solution of the inner cycle. The convergence crite-

rion of the global cycle is fx # 1.0 3 1025. The distortion The first geometry has been used by several authors [1,
5, 6, 12, 13]. It is a domain limited by the coordinate axesfunction is considered to be converged when the difference

of ff between consecutive iterations becomes smaller than and the lines y 5 1 and x 5 As 1 Ah cos(fy). Figure 9 presents
three grids of 41 3 41 nodes generated in this domain.1.0 3 1024 in two consecutive iterations. The different

applications will be denoted by the number of the figure Grids 9a and 9b have two different boundary point distri-
where the grids are plotted. The values of ff , MDO, MBE,
ADO, and ABE of all the applications are summarized in
Table III.

The orthogonality characteristics of the grids of the six
test cases used in the convergence studies, calculated with
the present convergence criterion, are also included in
Table III. The comparison of the present values with the
values obtained after 400 global cycle iterations shows that
a number of global iterations much smaller than the one
used in the convergence studies is sufficient to obtain the
grid, without a significant decrease in its orthogonality. In
some of the test cases, the value of MDO is even reduced.

FIG. 8. Evolution of the maximum deviation from orthogonality,
MDO, mean deviation from orthogonality, ADO, maximum Beltrami
error, MBE, and mean Beltrami error, ABE, in the Test Cases A, B, C,FIG. 7. Convergence history of the distortion function and grid coor-

dinates in the Test Cases A, B, C, and D. and D.



2D ORTHOGONAL GRID GENERATION 449

TABLE II that the method presented in [13] uses Neumann–Dirichlet
boundary conditions in the four boundaries, which meansValues of Maximum Deviation from Orthogonality, MDO,
that it does not have direct control on the boundary pointMaximum Beltrami Error, MBE, Mean Deviation from
distribution. The method of Allievi and Calisal [12] withOrthogonality, ADO, Mean Beltrami Error, ABE, Maximum
complete boundary point correspondence, produces gridsRelative Difference in the Distortion Function, ff , and Maximum

Difference between Grid Coordinates in the First Iteration of with larger deviations from orthogonality than the present
the Inner Cycle, fx , at the 400th Iteration of the Global Cycle method. However, in [12], the number of grid nodes used,

16 3 16, is smaller than the one used in the present grids.
Test The second application is included in the paper of Dur-case MDO MBE ADO ABE log10(ff) log10(fx)

aiswami and Prosperetti in [13]. It is a unit square with a
half-circle on each side. A 41 3 41 grid in this domain isE 4.36 7.32 0.31 0.30 21.90 24.09

F 5.54 6.31 0.23 0.14 21.00 24.10 illustrated in Fig. 10. In this example, the grid nodes are
equidistant along the boundaries. The value of MDO, 12.58
is the largest one obtained, with the exception of Test Case
2C. The maximum deviation from orthogonality occurs in
the vicinity of the corners of the domain, where the anglebutions. Grid 9c has the boundary point distribution of

grid 9b and, in addition, the distance of the first grid node between the grid lines is 2708. This poor performance of
the method is due to a local effect, as shown by the meanto the boundary is specified in all the boundaries. The

maximum deviations from orthogonality of grids 9a, 9b, values of the deviation from orthogonality and Beltrami
error. The present method is not able to deal satisfactorilyand 9c are, respectively, 0.208, 1.458, and 5.678. The values

of MDO seem to be related to the distortions imposed with internal angles which are larger than 1808. In this case,
the present handling of the grid coordinates at the cornersby the boundary conditions, which are reflected in the

precision of the distortion function calculations. The or- of the control ‘‘volume’’ does not ensure that the interpo-
lated coordinates are within the domain. If the distance ofthogonality characteristics of grid 9a, which has a regular

boundary point distribution, are similar to the ones pre- the grid nodes to the corners of the domain is reduced in
grid 10, the method produces a grid which has a negativesented by Duraiswami and Prosperetti in [13]. We note

TABLE III

Values of Maximum Deviation from Orthogonality, MDO, Maximum Beltrami Error, MBE, Mean Deviation from Orthogonality,
ADO, Mean Beltrami Error, ABE, Maximum Relative Difference in the Distortion Function, ff , for the Converged Solutions of
All the Test Cases

Test Number of Global
case grid nodes MDO MBE ADO ABE log10(ff) iterations

2A 41 3 41 0.64 1.36 0.12 0.12 22.40 27
2B 41 3 41 3.18 4.06 0.31 0.28 21.81 64
2C 41 3 41 44.2 65.6 2.01 1.43 20.77 32
2D 41 3 41 0.25 0.57 0.05 0.04 23.02 34
6E 41 3 41 5.16 7.34 0.34 0.30 21.67 126
6F 41 3 41 5.91 6.07 0.23 0.14 20.94 173
9a 41 3 41 0.20 0.49 0.04 0.06 22.93 21
9b 41 3 41 1.45 4.78 0.24 0.40 22.04 66
9c 41 3 41 5.67 11.4 0.34 0.54 21.54 106

10 41 3 41 12.5 22.0 0.18 0.20 21.75 66
11 41 3 41 0.42 0.50 0.07 0.04 22.48 21
12a 41 3 41 0.10 0.11 0.02 0.02 22.98 23
12b 41 3 41 1.05 2.93 0.19 0.21 22.00 24
13a 41 3 41 1.03 1.06 0.42 0.24 21.95 46
13b 41 3 41 1.37 1.60 0.47 0.18 21.89 45
14a 41 3 41 1.93 1.93 0.11 0.06 21.99 22
14b 41 3 41 4.41 2.26 0.18 0.07 21.53 41
15a 29 3 55 2.93 3.36 0.37 0.20 22.17 100
15b 29 3 55 3.78 3.27 0.62 0.24 21.45 30
16a 29 3 55 3.83 1.44 0.29 0.15 22.38 59
16b 29 3 55 5.37 7.03 0.41 0.22 21.60 48
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FIG. 9. Grids on a domain limited by the coordinate axes and the lines y 5 1 and x 5 As 1 Ah cos(fy). Distance of the first grid node to the
boundary specified in grid c.

Jacobian close to the corner of the domain. This type of It is a trilateral region limited by the lines y 5 x, y 5 2x
and the line defined by x 5 r cos u, y 5 r sin u withgeometry with internal angles larger than 1808, requires

modifications of the present discretization scheme. r(u) 5 1 2 0.1 p (1 2 sin u). In this example, two 41 3
41 grids are presented. The distance of the first grid nodeThe third geometry is also used by Duraiswami and

Prosperetti in [13]. It is a lune with the two sides given by to the curved boundary has been specified in grid 12b. The
values of MBO and MBE are small and the number ofthe lines y 5 x(1 2 x) and y 5 2x(1 2 x2). In this example,

two of the computational domain boundaries collapse into global iterations required is also small. The orthogonality
characteristics of the present grids are again comparablea single node in the physical domain, which means that

the Jacobian of the transformation is zero at these bound- to the grids presented in [13].
The applications presented in Figs. 13 and 14 are 41 3aries. A 41 3 41 grid generated in this domain is illustrated

in Fig. 11. The orthogonality characteristics, MDO and 41 C-grids and O-grids around a NACA 0015 airfoil. The
examples include grid line distributions in the normal di-MBE, of the grid are very satisfactory and the number of

global iterations required is the lowest of all the examples. rection with highly stretched regions close to the airfoil
surface, which are typical of viscous flow calculations. ForFor this geometry, the grid orthogonality characteristics

are similar to the ones presented by Duraiswami and grids 13b and 14b the distance of the first grid node to the
airfoil surface is specified. In the O-grid, the method isProsperetti in [13].

The next example is also a degenerate quadrilateral [13]. able to handle properly the trailing edge region, where the
angle between grid lines is almost 1808, keeping small the
deviations from orthogonality in the domain.

Figures 15 and 16 include 29 3 55 grids of two typical

FIG. 11. Grid on a domain limited by the lines y 5 x(1 2 x) andFIG. 10. Grid on a domain constructed with four half-circles at the
sides of a unit square. y 5 2x(1 2 x2).
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singularities and with grid line stretching, producing grids
with reduced deviations from orthogonality.

In the examples presented in Figs. 13b, 14b, 15b, and
16b, the maximum difference between the specified grid
spacing at the boundaries and the grid spacing of the gener-
ated grids is less than 3.5% of the specified distance. These
results show that the method is able to respect the specified
grid spacing at the boundaries without losing grid orthogo-
nality.

The maximum deviations from orthogonality and maxi-
mum Beltrami errors obtained in all the examples show
that the values of MDO and MBE are strongly dependent
on the precision with which the distortion function is calcu-
lated.

FIG. 12. Grids on a trilateral with sides y 5 x, y 5 2x and x 5 r cos
u, y 5 sin u, where r(u) 5 1 2 0.1 p (1 2 sin u). Distance of the first

6. CONCLUSIONSgrid node to the boundary specified in grid b.

A method for the generation of 2D orthogonal grids
with control of the boundary point distribution has been
numerically investigated. The method is based on a systemcross sections of a ship stern flow calculation. The geometry

of Fig. 15, which corresponds to a typical cross section of of partial differential equations and on an iterative deter-
mination of the distortion function from its definition equa-a tanker, has the difficulties imposed by the change in

curvature of the ship surface. The grid 15b was generated tion. The boundary point distribution is specified in all the
boundaries, and, in addition, the distance of the first gridwith a specified distance of the first grid node to the bound-

ary at the ship surface and at the opposite boundary. The node to the boundary may also be specified.
The convergence studies performed showed that thegrid line stretching imposed at the boundary is reflected

in the interior grid lines. In grid 15b, the distance of the maximum deviation from orthogonality of the generated
grids is related to the truncation error of the finite-differ-first grid node to the ship surface is actually constant. The

examples of Fig. 16 correspond to a typical wake cross ence approximations used in the discretization. These stud-
ies also indicate that Neumann–Dirichlet boundary condi-section. In this case, the grid includes a singularity at one

of the corners of the computational domain, where the tions cannot be used when the distortion function is
calculated iteratively from its definition equation.angle between the grid lines is 1808. The grid 16b was

generated with a specified distance of the first grid node In some geometries and for certain boundary point dis-
tributions the orthogonality constraint in the domain mayto the boundary at the ship surface and at the opposite

boundary. The method is able to deal with this type of originate the collapse of several grid lines into one, causing

FIG. 13. C-grids around a NACA 0015 airfoil. Distance of the first grid node to the airfoil surface specified in grid b.
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FIG. 14. O-grids around a NACA 0015 airfoil. Distance of the first grid node to the airfoil surface specified in grid b.

FIG. 15. Grids around a typical cross section of a ship stern. Distance of the first grid node to the boundary specified in grid b.

FIG. 16. Grids on a typical wake cross section of a ship stern flow calculation. Distance of the first grid node to the boundary specified in grid b.
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